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THETA ESP: FIRST-PRINCIPLES SIMULATIONS OF FUNCTIONAL 
MATERIALS FOR ENERGY CONVERSION
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PERFORMANCE OPTIMIZATION
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Strong scaling limit

• Utilizing tuned math libraries 
(FFTW, MKL, ELPA, …)

• Vectorization: AVX512
• High Bandwidth Memory

• Adding extra layers of 
parallelization -> increase 
intrinsic scaling limit

• Reducing communication 
overhead to reach the 
intrinsic limit



OUTLINE

•WEST – adding extra layers of parallelism
• Addressing bottleneck from I/O
• Implementing band parallelization

• Qbox – reducing communication overheads of dense 
linear algebra with on-the-fly data redistribution
• Gather & scatter remap 
• Transpose remap

• Conclusions and insights
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OPTOELECTRONIC CALCULATIONS USING 
MANY-BODY PERTURBATION THEORY (GW)
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Massively parallel 
by distributing 
perturbations 

Linear response theory

Matrix diagonization (syev, heev, elpa)



SINGLE NODE RUNTIME ON THETA IN COMPARISION 
WITH MIRA (1KNL VS 4BG/Q)
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• 80% of runtime is spent in 
external libraries

• 3.7x speedup from BG/Q(ESSL) 
to KNL(MKL) 

• High-bandwidth memory on 
Theta critical for performance 
(e.g. 3D FFTs): 3.1x speedup

Cache mode

CdSe, 884 electrons

BG/Q
ESSL

DDR



I/O ISSUE APPEARED IN WEAK SCALING STUDY
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• Original I/O scheme: all replica read the same file; I/O time increased with number of nodes 
becoming a significant fraction of runtime. 

• Time spent in I/O reduced to negligible fraction of runtime on 1-1024 nodes by having master 
process read and distribute wave function. 



IMPROVEMENT OF STRONG SCALING BY BAND 

PARALLELIZATION – A PATHWAY TO A21

Si35H36, 176 electrons
256 perturbations
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Increased parallelism by arranging the MPI ranks 

in a 3D grid (perturbations & bands & FFT) 

New intrinsic strong scaling limit: 
!"#$% = '()*+×-./01×'2

Image para.
Band para.

Cost: AllReduce once
across band groups 
(relatively cheap)
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QBOX
SCALING HYBRID DENSITY FUNCTIONAL CALCULATIONS



SiC512
512 atoms, 2048 
electrons, PBE0 

STRONG SCALING ANALYSIS OF QBOX FOR HYBRID-DFT 
CALCULATIONS

10F. Gygi and I. Duchemin J. Chem. Theory Comput., 2013, 9 (1), pp 582–587

dgemm

dgemm, Gram-Schmidt 
(syrk, potrf, trsm)

Exact exchange
3D FFTs

!"#"$% ∼ 10) − 10+ ,,-.
Grid: 256×256×256



DATA LAYOUT: BLOCK DISTRIBUTION OF WAVE FUNCTIONS 
TO 2D PROCESS GRID
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SiC512: 140,288 × 1,024

MPI_Alltoall(v)

MPI_Allreduce

Good scaling for 3D 
FFTs up to intrinsic limit: 
=>?@A = BCD=EBF



DENSE LINEAR ALGEBRA INVOLVED FOR TALL-SKINNY 
MATRICES AND SMALL SQUARE MATRICES 
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INCREASING OF COMMUNICATION OVERHEAD FROM 
SCALAPACK SUBROUTINES



REDUCING COMMUNICATION OVERLAP BY ON-THE-FLY 
REDISTRIBUTING DATA WITH REMAP METHOD

Increasing npcol à
• local computing time decreases,
• communication time increases à Performance 

degradation 

Solution: let a smaller group of processors do 
ScaLAPACK
• Do FFT on the original grid
• Gather data to the smaller grid
• Do ScaLAPACK on the smaller grid
• Scatter data back to original grid

Remapping time (gather + scatter) should be small. 



IMPROVEMENT OF STRONG SCALING USING 
“GATHER & SCATTER” REMAP
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hpsi + wf_update time remains minimal relatively flat 
with remap, and the remap time (custom) is two orders 
of magnitude smaller than hpsi + wf_update time. 

Custom remap function is 1000x faster than ScaLAPACK’s pdgemr2d.

Improvement of Qbox’s strong scaling after 
optimizations; runtime of improves from ~400 to 
~30s per SCF iteration (13x speedup) on 131,072 
ranks for 2048 electrons.

400.8s 

67.5s 

30.5s 



FURTHER IMPROVEMENT OF DGEMM RUNTIME BY 
“TRANSPOSE” REMAP
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Transpose communication pattern

Process rearrangement and data 

movement of transpose remap

Problem of “gather & scatter”:  
Idle processes.

How to utilize them? Assign idle 

processes to active columns.

Transpose remap: 
• Perform 3D FFTs in the original 

context. 
• Transfer data through a series 

of local regional transposes
• Run ScaLAPACK in the new 

context

Key concept for remap: creating different 
contexts that are optimal for different kernels 
redistributing the data on-the-fly

Improvement of runtime by remap methods

(1) $%&'(’ = +,-./
0 , $%2'34 = $%2'3

(2) $%&'(’ = +,-./
0 , $%2'34 = 8×$%2'3



CONCLUSION AND INSIGHTS

• Band parallelization reduces the internode communication overhead and 
improves strong scaling of WEST up to !""#!$%&'!()*+ cores. 

• Optimal remapping of data for matrix operations in Qbox reduces ScaLAPACK
communication overhead at large scale, and makes hybrid- DFT calculation scale 
to !""#!()*+ cores. 

• Given the increased computational performance relative to network 
bandwidths, it is crucial to reduce and/or hide inter-node communication costs.

Guiding principles for developing codes in many-core architecture: 
1) Fixing non-scalable bottleneck (e.g., Parallel I/O)

2) Parallelizing independent, fine-grain units of work, reducing inter-node 
communication, and maximizing utilization of on-node resources.

3) Optimizing data layout: optimizing communication patterns for performance 
critical kernels with on-the-fly data redistribution and process reconfiguration.
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